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PREFACE

VESIAC, the VELA Seismic Information Analysis Center, is an information col-

lectior, analysis, and dissemination facility established at the Institute of Science

and Technology of The University of Michigan. The contract is sponsored by the

Advanced Research Projects Agency under the Office of the Secretary of Defense.

The purpose of VESIAC is to analyze the research information related to the

VELA UNIFORM Program of Project VELA and to function as a central facility for

this information. The facility will serve all authorized recipients of VELA UNI-

FORM research information by issuing subject bibliographies with abstracts and

special reports as required. In addition, VESIAC will periodicalLy summarize the

progress of the research being conducted.

VESIAC is under the technical direction of the Acoustics and Seismics Labora-

tory of the Institute. In its operation VESIAC draws upon members of this labora-

tory and other members of the Institute and the University.
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SEISMIC-WAVE PROPAGATION FROM

SALT - DOME ENVIRONMENTS

ABSTRACT

Buried explosions in salt domes generate seismic waves and fracture the me-
dium in the region around the detonation. Results indicate that the mechanics and
dynamics of fracturing are not quantitatively well known in detail. Seismic waves
can be used to delineate the structural configuration of a salt dome. A continuous
velocity log shows that the velocity in the salt is constant, while the velocity in the
surrounding sediments varies with depth. It is suggested that the connection of
salt domes with a single mother salt bed at depth may be tested by using the velocity
contrast between salt and sediments. Significant decoupling effects, obtained by de-
tonating a chemical explosive in an underground spherical cavity, are examined. It
is concluded that proper equations of motions are already known, and theoretical
computed waveforms are in very good agreement with experimental results. The
decoupling factor is a function of frequency. Information obtained from the chemical

explosion indicates that similar favorable results seem possible for nuclear ex-
plosions.

I
GENERAL DISCUSSION OF THE GEOLOGIC CHARACTERIS1ICS OF

SALT DOMES

1.1. DISTRIBUTIONS AND CLASSIFICATIONS

Salt structures, either domal or anticlinal to ridge-like diapiric folds, occur in great num-

bers (more than 300), with various heights and areas, in the northern portion of the Gulf of Mex-

ico basin (in Alabama, Mississippi, Louisiana, and Texas). Figure 1 shows the location of salt

domes in the Gulf of Mexico basin in the United States, Mexico, and Cuba. Similar salt structures

are known in Utah, Colorado, the Arctic Circle, Romania, Russia, China, Arabia, France, Ger-

many, India, and Iran among other places.

It is known from drill and geophysical data that salt anomalies of the Gulf coastal region

consist essentially of a salt mass which has penetrated vertically upward through at least 25,000

or more feet of host rocks. The salt structures vary in shape as well as size, but they commonly

rice in spine-like fashion from great salt ridges or anticlines which may exist at several miles

of depth, and they generally have a circular or elliptical cross section of up to 8 miles in diam-

eter in their upper parts. Small domes may contain a modest amount of salt (10 cubic miles),

but the big ones may have a volume of 340 cubic miles or more of salt [ 2, 31. The salt masses
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may be mushroomed or flared at the top to form overhanging masses of salt. On top of many

salt domes, cap rock, consisting of massive anhydrite, gypsum, and calcite, was formed. The

salt mass may or may not pierce the overlying younger bed as it approaches the surface. Sedi-

ments surrounding the salt mass commonly dip away from it. Rim synclines, which are the

structurally low areas, are formed as adjacent features. Normal faulting of sediments is common

and may be across, peripheral or tangential, and radial to the salt domes.

Because of the great variety of situations and conditions created by their development and by

vertical penetration of the host sediments, various classifications of salt structures have been

proposed [1, p. 204; 2]. Generally, according to the known depths below the ground surface of

the upper surface of the salt mass, we may refer to (a) shallow: 0 to 2000 feet;* (b) intermediate:

2000 to 6000 feet; and (c) deep-seated: below 6000 feet. If the form and shape of the salt mass are

used as a basis for classification, we may have, either with or without mushrooming, (a) domes

and pillows; (b) stocks or cylinders; (c) ridges, anticlines, or massifs; and (d) teardrops (i.e.

severed from the source bed).

1.2. HYPOTHESES OF ORIGIN

The formulation of theories regarding the origin and development of salt structures has been

in progress since the latter pp.-a t of the nineteenth century [4 through 101. Briefly, geologists now

generally agree on these points: (a) salt in structures is derived from some mother salt bed or

beds of sedimentary origin; (b) salt moved into the structures by means of plastic deformation

started by some trigger action; (c) salt flows because of differences in density between salt and

surrounding sediments. As for postulation of the mechanics of origin, two outstanding hypotheses

will be briefly reviewed. Barton [ 7] proposed the down-building hypothesis. Regional subsidence

of old sediments including the mother salt bed, which was initially at the surface, carried the

mother salt bed to the present depth of as much as 35,000 to 40,000 feet below the surface. Salt

masses then tend to move upward because of the buoyancy derived from the different densities of

salt and the surrounding sediments. However, under the pressure of overlying sediments, the

plastic salt from the mother salt bed is forced to flow downward into the earth in reference to

the free surface, and to build the root of the dome downward. Only small forces are necessary

to overcome the friction involved in the movement of salt through sediments.

A more widely accepted fluid mechanical hypothesis is proposed by Nettleton [ 9, 11]. The

salt masses, moving upward to their preseit position from great depth of burial, actually intrude

into the host rocks. The source of energy is suggested as the unbalanced weight of the overlying

sedimentary rocks or the density difference between the salt (sp gr 2.22) and sediments (sp gr

1.7 to 2.8 depending upon depth). Another basic assumption is that both the salt and the surround-

3
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ing sediment behave as highly viscous liquids and slowly flow through long geological time. A
schematic diagram based on this hypothesis is shown in Figure 2. More experimental and ob-

served data on the origin of salt domes may be found in work by Parker and McDowell [ 13], Balk

[14], and Bornhauser [15].
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Since salt domes are scattered over a wide area, which indicates that they may be formed

under different environments, the structure and composition of the salt mass from one dome
would be expected to differ somewhat from those of others, and this expectation has been con-

firmed by investigations reported by Balk [ 14, 16]. However, large-scale layering and small-
scale features are essentially alike in two domes investigated which are 300 miles apart. In

general, the salt in salt domes consists of a granular aggregate of halite crystals about 1/2 to
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1/4 inch in diameter. The crystals are commonly somewhat elongated, frequently several inches

in length, with various kind of inclusions. The longest axes of the crystals and impurities fre-

quently point in the vertical direction. Huner [17] reports the composition of a salt sample from

the Winnfield Dome, Winn Parish, Louisiana, which is compared with the averaged composition

of bedded salts, in Table I.

TABLE I. COMPOSITION OF A SAMPLE FROM A SALT DOME
IN LOUISIANA COMPARED WITH THE AVERAGED

COMPOSITION OF BEDDED SALTS

Salt Dome (%) Bedded Salt (%)

Sodium Chloride 97.23 89.0
Calcium Sulphate 1.65 8.0
Acid Insoluble Matter 1.01 3.0
Calcium Chloride .08 ---
Iron and Aluminum Oxide .03 ---

Layering is the dominant megascopic structural feature of salt in domes. White and gray

alterations of variable thickness (an inch to several feet) predominate, with occasional black

layers containing larger quantities of impurities. Various types of folds, from broad open ones

to tightly compressed isoclinal ones, are present in the salt mass. Axial planes of the folds are

characteristically nearly vertical, and this indicates a vertical element of deformation overshad-

ows all other directions of strain. It is also intei esting to note that the pure salt (so-called soft

salt) appears commonly tn be around the edges of the salt mass, while the less pure salt (so-

called hard salt) is commonly found in the core of the salt mass.

1.4. STRUCTURAL RELATIONSHIPS BETWEEN SALT MASS AND HOST ROCKS

Salt masses have many varied relationships to, their surrounding sediments. If the fluid

mechanical or upthrusting hypothesis on the origin of salt domes is followed,' then piercing and

compression of the enclosing strata by tie upward moving salt mass, along with varying amounts

of upwarping and thinning of beds adjacent to the salt mass, may have occurred. When the salt

flows into a growing mass, it may form a peripheral area of thin salt in the mother bed; the vaca-

ted space is then filled from above by the withdrawal flow of sediments. The resulting down-

warping of the strata that partially or completely encircle the salt mass forms a rim syncline

or rim basin. Depending on the local stress-strain conditions associated directly with move-

ments of salt masses, these strata may be complexly faulted, arched steeply or gently, ruptured

and pierced by the salt, or deformed by various combinations of these. Normally there is periph-
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eral upwarping, up to being vertical or overturned with accompanying thinning, of the sediments

immediately adjacent to the salt mass around most known domes. From thickness studies over

and around salt structures, the growth rate of a salt mass has been deduced, and it has been

concluded that upthrustings of the salt were separated from one another by relatively long pe-

riods of quiescence. Causes of variation in the relative height of the salt masses are undeter-

mined, but it is likely that the amount of mother salt available, the thickness of overburden, and

the rapidity with which this thicklness accumulated are all involved.

1.5. PHYSICAL CONSTANTS OF SALT

From in situ field measurements conducted in the Winnfleld Salt Dome (about 1.25 miles in

diameter) near Winnfleld, Louisiana, and from laboratory tests using a standardized test proce-

dure [18], Nicholls [19] gives the elastic constants of salt which are compared in Table U with

the results of in situ field measurements conducted in the GNOME drift near Carlsbad, New Mex-

ico, as reported by Carroll and Dickey [20]. Random samples from different places at the test

site In the Wlnnfield Salt Dome, for the determination of the weight density of salt, showed no

TABLE It. COMPARISON OF THE ELASTIC CONSTANTS OF SALT

Salt Dome Bedded Salt
In Situ Laboratory In Situ

Value Deviation Value Deviation Value Deviation
(%) (%) (M)

Longitudinal
Velocity, Vp
(fps) 14,350 *0.7 12,810 *4.0 13,400 *2.3

Shear Velocity,
Vs (fps) 8380 * 1.2 8800 ,2.6 7050 ,2.6

Poisson's
Ratio, a 0.241 *6.1 0.059 *76.2 0.31

Modulus of
Elasticity, E6
(psi) 5.09 x 106 *4.5 4.79 x 10P 7.9 3.5 x 106

Modulus of
Rigidity, 86
(psi) 2.05 x 106 3.3 2.26 x 106 ,5.3 1.4 x 10 -

Lame's Con- 6
stant, X (psi) 1.91 x 10 Not Computed 2.3 x 106

Bulk Modulus, k6
(psi) 3.28 x 106 Not Computed 3.1 106

Density
(gm/AM 3 ) 2.16 Not Computed 2.02
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significant differences. Nearly constant longitudinal- or shear-wave propagation velocity was

observed in the field regardless of distance, direction, or depth (21]. This is confirmed by other

measurements which will be discussed in Section 3.3. Salt samples removed from a salt mine

for laboratory testing are not, however, typical of the salt in an undisturbed location. When a

salt sample is removed, a certain amount of relaxation occurs because it is relatively plastic

and elastic, and cracks usually appear. Discrepancies between elastic constants obtained by in

situ determination and those from laboratory determination are possibly influenced by such

environmental factors.

2

FRACTURING OF THE SALT MASS BY A CONTAINED EXPLOSION

2.1. FRACTURING IN GENERAL

Whether an underground explosion is chemical or nuclear, near the explosion the detonation

wave, for which the pressure is very high, interacts with an explosive medium or medium inter-

face, and a shock wave is transmitted into the host medium. Shock waves are characterized by

a nearly spherical surface across which there is a sharp discontinuity in the physical state of the

medium. For most solid media, the shock-wave pressures, in the range of 100 to 200 kbar, (I

kbar = 986.9 atm. = 169 dynes/cm 2 ) are attained easily with chemical explosives. Pressures in the

range of 10,000 to 100,000 kbar can be obtained by nuclear explosives [21] for as long as several

msec. As the shock wave moves outward in the form of a spherically diverging shell, part of the

medium is melted and vaporized, and the peak pressure in the shock-wave front drops rapidly

because of the spatial divergence and the expenditure of energy in doing work (inelastic processes)

on the surrounding medium. This work appears as crushing, heating, fracturing, and physical

displacement of the rock if the dynamic crushing strength of the medium material is exceeded.

Permanent deformation and compaction in the solid is produced by plastic flow until the peak

pressure in the shock-wave front is decreased to the value of the plastic limit of the medium.

Hence this plastic limit is the boundary between the plastic and elastic zones around an under-

ground explosion. Beyond this boundary the shock wave becomes an elastic wave and proceeds

outward until attenuated.

In the above discussion the effects of any free surface, effects which are exceedingly im-

portant in peaceful applications of nuclear energy for cratering and excavations, are neglected.

Briefly, as a compressional wave encounters a free surface, it must match certain boundary

conditions so that the normal stress is zero at all times. This results in generation of a nega-

tive stress wave (a compressional wave is reflected as a tensile wave) which propagates back

7
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into the medium, and then the process is reversed. Assuming that the stress-strain relation of

the medium is linear, the form of the reflected wave is the same as that of the incident wave, and

interference is produced. If the maximum tensile strain value resulting is greater than the

dynamic tensile strength of the rock (which is only about 1/50 of the compressional strength for

most rocks), then the rock is "pulled" apart, and a piece flies off with a velocity characteristic

of the total momentum contained in it. A new free surface is then produced, and this process is

repeated until the dynamic tensile strength of the rock becomes greater than the stresses. The

process is called spalling, and detailed discussions of it are given by many investigators [22

through 28].

Analytic treatments of such phenomena as discussed above by analytic methods is difficult

because of the complexity of the stress-strain relations; the transitions between gaseous, liquid,

plastic-fractured, and elastic states; and the nonlinearity of the partial differential equations

that describe these states. However, phenomena of the first few milliseconds of the RAINIER

nuclear explosion (1.7 * 0.1 kt TNT equivalent, vertical depth of burial = 790 feet, shot medium:

welded tuff [29]) were successfully predicted by Nuckolas [30]. The basic equations for the tuff

medium were derived from the partial differential equations for conversation of momentum and

energy. The shot medium was represented by the generalized Hook's law when elastic, by a bulk

modulus type equation when fractured, by the initial shock Rankin-Hugontot equations in the

plastic and liquid states, and as a Thomas-Fermi-Dirac gas when vaporized. The calculated

and experimental data ara shown in Figure 3. The shock strength is a function of radial distance.

The maximum radius of the cavity for the RAINIER shot was predicted to be about 63 feet, and

the actual radius determined by the post-shot investigation was 62 feet.

The collapse mechanism of a cavity created by a contained explosion is not well understood

and probably will depend a great deal on the elastic properties of the medium. Johnson, Higgins,

and Violet [31] studied eight underground nuclear detonations at the Nevada Test Site. The

explosions varied in energy release from 55 tons to 19,000 tons of TNT equivalent, with variable

depths of burial from 17 feet to 840 feet in welded tuff. For the RAINIER shot, the initial cavity

formed by the explosion before collapsing was estimated to have a radius of R = 50W1/ 3 feet,

where W is the energy release in kilotons of TNT equivalent. The cavity was lined with about 4

inches of melted rock and probably filled with steam at a pressure of 40 atm. [32]. The initially

melted rock amounts to 500 * 150 tons per kiloton of released energy. The cavity lasted about

30 seconds to 2 minutes, then collapsed. The caving progressed vertically to a distance of 386

feet above the point of detonation. The collapse of the cavity produced a zone of about 120,000

tons of broken permeable material per kiloton of released energy.

8
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FIGURE 3. COMPARISON OF CALCULATED AND EXPERIMENTAL
DATA ON SHOCK WAVES OF THE RAINIER EXPLOSION [33). o Experi-

mental measurements. - Calculations.

2.2. EXPERIMENTAL STUDIES OF FRACTURING BY CHEMICAL EXPLOSIONS IN SALT MASSES

To study fractures and modes of deformation in a relatively homogeneous medium in which

an explosion has occurred, a series of chemical explosive charges were detonated in a salt dome

near Winnfield, Louisiana, in 1959 and 1960. The charges were mainly Pelletol, a TNT explosive

in the form of free-flowing oval pellets of approximately 3/32 inch diameter (loading density = 1,

detonatien velocity - 15,200 ft/sec). The effects of a 987.5-lb charge of Pelletol tamped in a

cylindrical hole in salt, with about half of the volume filled with salt grout and sand, were inves-

tigated in detail by Short [34]. Before the explosion, a one-dimensional computer code developed

by Nuckolls [30] was used for the calculation and prediction of physical phenomena associated

with this experiment. The comparison between the theoretical predictions and actual results is

summarized in Table I [34].

9
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TABLE I. COMPARISON BETWEEN THEORETICAL
PREDICTIONS AND ACTUAL RESULTS FOR A

CHEMICAL EXPLOSION IN SALT

Cavity Volume Theoretical Observed

Post-ShotPre--ot 5.6 4.4

Plastic Radius 15 ft 3.0 ft

Crack Radius Limit

(a) Maximum Tensile
Fracturing (Including
Carbon-Free Fractures) 80 ft 80 (,?) ft

(b) Carbon-Filled Fractures

(1) Maximum 32 ft 45.5 ft

(2) Average ---- 25 ft

(estimate)

All fractures a foot away from the cavity were tight ones with a thickness of 1/64 to 1/16

inch. Radial trend of the fractures could be seen when standing several feet away from them.

Fractures were observed to zigzag repeatedly on a minute scale in response to possible control

by crystal cleavage and boundaries, and to split, bifurcate at their ends, offset or overlap, and

develop short branches. Fractures extended commonly to a radial distance of 15 feet from the

cavity; one extended to 45.5 feet. The fractures probably begin at the cavity surface and within

the inelastic zone (2 to 3 feet from the cavity by macroscopic evidence) at points between the

outer limits of plastic deformation and failure under dynamic tensile stress, but clear-cut field

evidence for this was lacking. Jaffe, Reed, and Mann [35] have indicated that fractures in the

zone of tensile failure begin as a series of microcracks at various points along a planar zone,

which usually coalesce to form one continuous fracture, and this mode of fracture was observed

near the cavity.

On account of the unsymmetrical loading of explosives, with sand above and salt grout below,

the shock waves did not progress outward in a spherical manner, and the maximum push was

sustained by the walls immediately in contact with the explosives in the cylindrical hole. Tensile

stresses developed along surfaces concentrically, and therefore produced radial fractures about

the cylinder axis only. As for the roof or floor of the cavity, stresses concentrated at the junc-

tures between wall and roof or floor, and produced conical fractures by tensions. Thus, the new

cavity has a sh,.pe roughly that of a barrel, and a void volume of 77 ft in comparison to the

10
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original 17.5 ft 3 . The salt adjacent to the expanded cavity did not melt or crush, remaining

competent enough to stand without caving or slabbing along fractures.

2.3. EXPERIMENTAL STUDIES OF FRACTURING BY NUCLEAR EXPLOSIONS IN SALT BEDS

The GNOME explosion, at a depth of 366 meters in a thick salt bed 40 km southwest of Carls-

bad, N. M., provided an excellent opportunity to measure the nature and extent of rock deforma-

tion caused by a contained nuclear explosion. For in situ, close-in measurements (within 12

meters from the center of detonation), no reliable data were obtained [36]. But measurements

of strong-motion parameters, including acceleration, particle velocity, particle deplacement,

stress, and strain, were made in the region extending 60 to 480 meters from the center of detona-

tion, both along vertical and horizontal radii [37]. It is interesting to note that the travel-time

data revealed three distinct arrivals of waves. The first arrivals had a velocity of 4.839 km/sec,

and were interpreted by Weart [37] as pressure waves propagated through a one-foot thick, hard

microcrystalline polyhalite layer about 2.5 meters below the center of detonation. The second

distinct arrivals, with larger magnitudes and a velocity of 4.318 km/sec, probably represent an

elastic precursor to the plastic wave, which was identified as the third set of arrivals. Weart

also reported that spalling probably occurred at several horizons, with the deepest spall separa-

tion 92 meters below the ground surface. The residual upward displacement at surface zero

5 minutes after detonation was 79 cm, and the transient displacement at the surface is reported

as 1.5 meters [38]. However, fractures with measurable displacement at surface ground zero

are limited to an area of 100 meters radius. Swift [391 observed spalling of surface formation

horizontally out to about 1000 meters, and confirmed that spalling of surface layers or surface

changes can be expected from any underground shot of moderate depth where the surface accel-

erations exceed . g.

Rawson [40] estimated that a cavity with a total void volume of about 960,000 ft 3 , equivalent

to that of a sphere with a radius of 61.4 feet, was produced by the GNOME explosion (a 3.1 * 0.5-.

kt nuclear device). The departures from spherical symmetry in the cavity are partly caused by

implosion of the cavity walls and some ceiling collapse. The final cavity is shown in Figure 4.

The amount of rock melted by the explosion is estimated to be about 2400 tons. This is closely

mixed with 13,000 tons of salt rock that is spalled into the cavity. From drilling data, no melt

injection farther than 125 feet above and 75 feet below the working point were observed. The

equatorial bulge is postulated as resulting from bedding-plane weaknesses and lubricating hori-

zontal clay seams in the pre-explosion structure of the salt bed. Because the melt injected into

cracks in rock salt beyond the cavity contained little radioactivity, it appears that injection took

place before the melt could mix well with the fission products. However, in the region of the

lower portion of the emplacement drift, nonradioactive melt is found mixed with the crushed rock,
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forming a rock-melt breccia in the radial cracks. Hoy and Foose [38] reported that a shaft

340 meters from the shot point received practically no damage, with only a few small fractures

observed at depths of about 23, 27, 49, and 146 meters.

3
SEISMIC VELOCITY CONTRAST BETWEEN THE SALT MASS AND THE

SURROUNDING SEDIMENTS AS A FUNCTION OF DEPTH

3.1. ELEMENTARY REMARKS ON SEISMIC METHODS

In investigations of properties and configurations of the geological strata below the ground

surface by seismic methods, most information results from applying physical equations to phe-

nomena observed at the earth's surface. One example is the use of observed travel times of

elastic waves through the earth's layers to calculate the velocities of elastic waves as a function

of depth. However, mathematical obstacles are encountered it, attempted solutions of the com-

plex equations that must be used to represent the layered earth. Therefore, it is necessary to

simplify the problems by making reasonable assumptions in order to get useful results. Many

detailed treatments of these relations may be found in seismological works (41 through 46].

Since the partial differential wave equations for a homogeneous, isotropic solid medium of

infinite extent are well known, then for a particular problem, one or more of the different types

of solutions may be formalized in various ways to satisfy the boundary and initial conditions and

to give a unique solution. If the earth approximates a homogeneous, elastic solid, the energy of

disturbance is transmitted as elastic body waves, of which there are two types, compressional

(P) and shear (S) waves. The usual wave equations, neglecting the body forces, are given [41] as

_= (1)

a 2 a t2

2 a2 pi (i = 1, 2, 3)
2 2 at 2

where

0 is a scalar potential

I(I1' 0 2 3) is a vector potential

a = =T- propagation velocity of P waves

p3 f = propagation velocity of S waves

13
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,. are Lame's constants

p is the density of the solid medium

Under a given set of physical conditions, the wave equation can be transformed to the Elkonal

equation, and a solution in terms of wave surfaces and rays can be obtained. This method is

generally followed by exploration seismologists in the oil industry. The wave surface is defined

as the loci of points undergoing the same motion at a given instant; the rays are the normals to

the wave surface and give the directions of propagation of energy through the medium. The

wave equation may also be developed through given boundary coditions into a solution in terms

of normal modes, and this solution is a summation of contributions from various preferred fre-

quencies of vibration of the system. The earth may be considered as a continuous vibrating

* system following the occurrence of a disturbance.

The body waves (P and S) are reflected and/or refracted when they encounter a boundary

between two different media, and both compressional and shear waves are generated when a

single incident wave arrives at the boundary. The generated waves leave the boundary at dif-

ferent angles, with energy contents in accordance with reflection, refraction, and transmission

coefficients obtained from the energy equations. Muskat and Meres [47] gave systematic numeri-

cal tables of reflection and transmission coefficients for plane waves incident on various types of

elastic interfaces, for application in seismic reflection work. Gutenberg [48] developed graphs

for the square root of the energy ratio of the reflected and transmitted waves, for several values

of the elastic parameters. Ergin [49] has also computed the square roots of energy ratios of

reflected P waves to transmitted S waves at solid-water boundaries. The travel times of body

waves along various paths from the source to receiver are the primary data from which velocity

variation models of subsurface structure can be determined. Amplitudes and phases of recorded

waves, as functions of distance and azimuth, supply information on the conditions at the source

and absorption or dissipation along the propagation path.

Besides the body waves, long-period waves are formed that travel along the surface of an

elastic medium. These are called surface waves, and the particle-motion amplitude decreases

with depth into the medium. There are many types of surface waves which can theoretically

exist, but they may be divided into two major classes: Rayleigh waves, in which the particles

undergo a retrograde ellipitical motion, with the long axis of the ellipse usually vertical; and

Love waves, in which the particles undergo a motion transversing the direction of transmission.

The propagation of surface waves is dispersive because of the variation of elastic properties

with depth in the crust and because of the curvature of the earth's surface. Oliver [50] has sum-

marized the phase and group velocities for Rayleigh and Love waves of periods from about one

14



Institute of Science and Technology The University of Michigan

second to one hour. Elastic parameters in the earth are obtained by comparing these observed

curves with theoretical curves, computed with simplifying assumptions, for various laboratory

earth models.

The generation of the primary seismic signals by contained explosions in different media

and the absorption of seismic waves by the medium have been ably reviewed recently [51, 52].

It suffices to remark that there are as yet no complete theories to predict and explain observed

seismic waves, but outstanding progress has been made in recent years by various workers

[53, 54, 551.

3.2. THE EFFECTS OF VARIATIONS OF VELOCITY WITH DEPTH

In seismic exploration only the compressional wave is utilized. Because the source-detec-

tor distance at the surface is usually extremely short, the compressional and shear waves ar-

rive so close together that they are recorded on the seismogram almost superimposed. The

shear-wave onset is often lost in the train of motion following the arrival of the compressional

wave. Therefore the transverse components of the waves are observed, and then usually ignored.

Generally, the observed compressional waves are assumed to have traveled through three dif-

ferent paths from the source to a seismometer: the waves are (1) direct compressional, (2)

refracted compressional, and (3) reflected compressional. The last of these furnishes the

information sought by seismic explorations.

Two quantities are usually measured in applied seismology: time of arrivals from differ-

ent events, and distance between source and receiver. Amplitude and frequency characteristics

are used qualitatively in the correlation of events on various seismograms. Hence the computa-

tion of depths and displacements in application of the seismic method requires accurate knowl-

edge of velocity in the region under consideration. Since the applied seismologist is interested

in the layered crust, which departs in various degrees from the assumed isotropic and homo-

geneous conditions in either a horizontal or vertical direction, the use of very complicated

mathematical equations might seem unavoidable; however, investigations show that the mathemat-

ical treatment can be kept reasonably simple and good approximations still obtained. The as-

sumption is usually made that the velocity is a function only of depth or only of vertical travel

time. Since there is a unique correspondence between depth and vertical travel time, the two

assumptions are essentially equivalent except for certain types of velocities. Mott-Smtth [56]

has shown that in certain cases the vertical time function may be simpler to use than the cor-

responding types of velocity-depth function. Muskat [57] has also shown that where it is ex-

tremely difficult to find velocity explictty in terms of depth, then the depth may be given explic-

itly in terms of instantaneous velocity. However, the model wherein the velocity is a function

of depth only is probably the most widely used one in seismic exploration.
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In a medium in which the velocity, v, is assumed to be a function only of the depth, then the
parametric equations for the detector displacement, x and travel time, t, in terms of the param-

eter 0, are [581:

Ssin OdO(2)
o1 PV (z)

t=f dO

o v' (z) sin o

where 0 is the angle between the ray path and the vertical at any point of the path, and 0o is the
emergence angle. This constant for the ray path, p, is given by sin 0 = sin 9° from Snell's law.Vo 0O dv(z)
Instantaneous velocity is represented by v(z) as a function of depth, and v'(z) - is expressed

in terms of 0. The schematic relation of the different terms is shown in Figure 5,where 0 rep-
resents the shot point, and OX and OZ represent the horizontal and vertical axes, respectively.
The parametric equation for the depth, z = z(9) can be obtained from a given velocity-depth func-
tion together with the relation pv = sin a . The relation between vertical travel time, tv, and
depth is

tv 07 (3)

0P

Z

FIGURE 5. RAY PATH DIAGRAM

16



Institute of Science and Technology The University of Michigan

and the average velocity, Va, as a function of depth, to any depth is

zva(Z) =-- (4)

Using the above analysis as the basis of computation, Kaufman computed related functions for
1/ndifferent functions of v(z). The function v = v 0(1 + kz) l , where v° is the initialvelocity andkis

the slope constant, covers a number of cases of practical importance; for instance, n -1 and

n = 2 give the linear and the parabolic function, respectively. The important relations based

on these instantaneous velocity-depth functions are shown in Table IV.

TABLE IV. RELATIONS BASED ON GIVEN INSTANTANEOUS VELOCITY-DEPTH FUNCTIONS

Instantaneous Velocity - Depth Function

v0 (1 + kz) vo(1 + kz 1/2

Corresponding kv z v
Average Velocity- 0 o + +
Depth Function log (1 + kz) 2

Corresponding kvt
Instantaneous Velocity- v e o v (1 +.kvt)
Vertical Time Function 0 0 ov

Corresponding kv t
Average Velocity- e v -1 ( 1 kvot
Vertical Time Function kt v v)

v

Travel Time from Shot 1 tan 2(0 = 0
Point to Any Point of k log 0 kvo sin 0
Path o tanO

Displacement 0 - Cos 1 [(20 - sin 20) - 20 - sin 20o) ]k sin 00 2k sin2  0 0

/ 2Vertical Depth to Isin91 ) 11sin- 0_
Any Point of Path sin 0  2sne i

3.3. CONTINUOUS VELOCITY LOGS IN SALT AND SURROUNDING SEDIMENTS

The information on seismic-wave velocities in subsurface strata is usually obtainable by

either reflection or refraction work. However, another very important and reliable method is
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the well velocity survey, which is obtained by lowering a well geophone into a well and measur-
ing the direct arrival time of P-waves generated by an explosive source near the surface. As
an additional development, Summer and Broding [59] introduced continuous velocity logging
(CVL) in 1952, and subsequent improvement has made this significant technical feat routine.
Generally, the instrument utilizes a transmitter of a high-intensity ultrasonic pulse, located
some suitable distance away from either one receiver or two isolated from each other by acous-
tic insulators. With one receiver, the delayed time, At, is the total minimum travel time of the
signal from the transmitting transducer to the receiving transducer over a known distance

through the geologic formation. If two receivers are used, the nearer receiver obtains the sig-
nal from the formation first, At ahead of the second receiver. Thus the compresaional velocity
in the formation in the chosen interval may be obtained and plotted as a function of depth. Of
course, if an accurate transit time of a P-wave to any particular depth is desired, the conven-
tional well geophone survey is still probably the preferable method. The CVL gives the interval
velocity, and thus helps in the analysis of seismograms obtained at nearby surface locations.
Figure 6 shows two such velocity logs, obtained from wells in the same field in Caldwell County,

Texas.

Hicks and Berry [60] and Wyllie, Gregory, and Gardner [61] have shown that velocity of
acoustic propagation is affected by pressure and differential pressure. Tuman [62] has com-
mented that the concept of a straight-line path of the refracted beam as the source of energy
for the first arrivals recorded by the receivers may be erroneous, and that beams which have
followed a curved path will arrive before the beams travelling along a straight line in a variable
refractive index medium.

Because of the highly competitive nature of the oil exploration industry and because the

CVL is one of the end products of an expensive venture, very few of these have been published,
though many thousands have been made over the years in different regions. However, Socony-
Mobil Oil Company has kindly consented to release two continuous velocity logs for publication,
and they are shown in reduced form in Figures 7 and 8. The logs were taken from two holes
within one mile of each other near the Hockley salt dome in Harris County, Texas. Figure 7
shows the CVL taken in a drilled hole through the flank portion of a salt dome from 1145 feet to
8445 feet (measured below kelly bushing); this indicates an average velocity of about 15,200 ft/sec.

It can be seen that the velocity in salt is nearly constant. From 8445 feet to the end of the
log, where the velocity i about 20,000 ft/sec, the material was anhydrite [63]. The velocity

of the salt in salt domes at dtfferent localities is usually quite consistent, ranging from 14,500
to 15,300 ft/sec with an average velocity of 15,000 ft/sec, as observed by Musgrave and Lester

[63] and Palmer [64] in many surveys for delineating salt domes. On the other hand, the veloc-
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FIGURE 6. DIAGRAMMATIC REPRESENTATION OF TWO
CONTINUOUS VELOCITY LOGS FROM TWO WELLS IN THE

SAME FIELD [591

ity within the normal geologic section increases with depth and varies laterally, as indicated

in Figure 8. For instance, the average velocity at 7500 feet is about 10,000 ft/sec in compari-

son with 700n ft/sec at about 1000 feet. Thus the velocity contrast between salt domes and host

rocks is large near the surface, but diminishes with depth.

A word of caution should be added about the discrepancies between conventionally obtained

travel times and the integrated continuous velocity curves. This matter is still at the stage of

being Investigated. It seems that there is a systematic deviation of velocity between the con-

ventional and CVL measurements, with the latter giving velocities which are consistently faster

by about 2%. Gretener [65] studied about 50 velocity surveys obtained with both methods for

wells located in Western Canada, and noticed that the deviation i independent of velocity and

lithology, but anistropy and curvature of ray path contribute to the systematic deviation in the

shallow intervals.
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4
SEISMIC COUPLING OF SALT DOMES TO SURROUNDING SEDIMENTS

4.1. SEISMIC DETERMINATION OF SALT DOME BOUNDARIES

Salt masses may be located by the reflection or refraction seismic methods. Explosives

are detonated in shallow drilled holes, and reflected or refracted seismic waves from different

interfaces of sediments are recorded with lines of geophones planted at the earth's surface.

The salt mass can then be mapped by an absence or cutoff of reflections. However, this nega-

tive indication is not an accurate method because there are other factors that may produce the

same observed phenomena. Besides, it is reasonable to speculate, following the widely accepted

upthrusting theory of origin [9], that the salt-sediment interface is probably a ragged interface

caused by infolding of salt and sediment, and hence not a good reflecting surface. At the least,

the amplitude and character of reflections are expected to be quite variable; so positive identi-

fication of the boundary may be difficult.

Refraction shooting is suitable for mapping a salt mass. If the source of energy is located

at one side of the dome and the receiver at the other side of the dome, the first-arrival energy

will follow a ray path through the high-velocity salt mass. If the velocities in the surrounding

sediments are known, either by well shooting or surface-to-surface refraction shooting, then

the salt mass can be mapped by radial refraction lines. Musgrave, Woolley, and Gray [66] have

divided the method of outlining a salt mass by refraction shooting into two phases. The first

phase, called the exploration phase, is conducted after the rough location of the salt dome by

the reflection method. Short refraction lines are shot to determine the depth of the top of the

salt and to locate the center of the top of the dome. For velocity control over the normal geo-

logic section surrounding the dome, time-distance data and wavefront charts are obtained from

a refraction line over the section. Then a number of radial refraction lines are shot to delineate

the flanks of the dome. Figure 9 shows the method of surface-to-surface refraction plotting

for a vertical section. The second phase of the shooting, called the exploitation phase, is con-

ducted with geophones in wells located on the flank of the dome. Velocity lines are shot away

from the dome, and wavefront charts may be prepared from such data. A fan of lines is shot

to profile the flanks on the opposite side of the dome to greater depths, and then a final map,

such as is shown in Figure 10, can be derived to outline the salt mass. A number of salt domes,

both on land and offshore, have been mapped by these steps, and the accuracy of this method for

locating the boundary of the salt mass, as checked by subsequent drilling, is in the range of a

few tens of feet. The most serious discrepancies on the salt mass boundary probably may be

expected at depths roughly equivalent to or greater than the depth of the well geophones. Of

course, at depths where the velocity contrast between the salt and surrounding sediments is

small, this method will not be successful.

21



Institute of Science and Technology The University of Michigan

p. ' GE-OW4

ow-

4 b 4

I 
T.

FIGURE 9. SURFACE-TO-SURFACE REFRACTION PLOTTING FOR A VERTICAL
SECTION (661

FIGURE 10. FINAL OUTLINE MAP OF A SALT MASS MADE BY USING DATA

FROM THREE FLANK WELLS 1661

22



Institute of Science and Technology The University of Michigan

McCollum -and LaRue [67] and Gardner [68] have studied the possibility of determining the

boundary of a salt dome from the minimum travel times of seismic energies recorded at a

well geophone within a deep hole flanking the dome. The three-dimensional problem of locating

the dome boundary is solved by constructing a limiting surface which satisfies the condition

that the sum of the travel times in the salt and surrounding sediments shall equal the measured

total travel time. This surface will always be convex toward the high-velocity medium, as can

be seen in Figure 9. Holste [69] made good determinations of salt-sediment interfaces of salt

domes by seismic measurements in boreholes in Northwest Germany. He noted that in order to

secure good recordings of all waves, some of which were received in the vertical direction and

some in the horizontal, both horizontal and vertical geophones should be used. He provided

several interesting examples taken from actual field measurements and including illustrations.

Reflection records shot and recorded directly over the tops of shallow salt domes in South-

ern Mississippi [70] and Moss Bluff Dome, Liberty County, Texas [71], exhibit persistent and

outstanding deep reflections which are interpreted as coming from the base of the source bed

of salt. Possible reflections from still deeper underlying sedimentary strata are also recorded,

as shown in Figure 11. Using reasonable assumed velocities for salt and the surrounding sedi-

ments, Swartz [70] calculated the depth of the salt in dome A as 25,800 feet and in dome B as

22,400 feet. The depth to the base of the salt in the Moss Bluff Dome is surprisingly shallow-

about 16,000 feet as calculated by Hoylman [71).

In the present state of the art of the seismic method, it is not feasible to base interpreta-

tion methods upon the amplitudes or intensities of the waves recorded at the surface. The re-

corded wave amplitudes are the result of a multitude of effects mostly unknown in detail: the

spectrum of frequencies of the source, inhomogeneity of the media, unknown attenuation from

absorption, and mode conversion and multiple reflections at interfaces. Nevertheless, knowl-

edge of the energy flux at the interface of salt and the surrounding sediments for various angles

of incidence is of fundamental interest as providing a background for qualitative considerations

in the interpretation of records. As a typical case, if the incident wave is a compressional wave

that originated in the salt, then typical compressional wave velocities of 15,000 and 7,500 ft/sec

in salt and sediments, respectively, are expected, and densities of the salt mass and its sur-

rounding sediments are equal. Table V has been constructed, using Muskat and Mere's data

[47], to give the fractions of the incident energy transformed into reflected compressional waves,

transmitted compressional waves, reflected shear waves, and transmitted shear waves at the

salt-sediment interface in such a case.

All the calculations given in Table V are based upon the assumption that there is no absorp-

tion and attenuation of the waves within each medium. This assumption will undoubtedly not be
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completely valid in actual field conditions. The effect of the shot medium plays an important
role in wave generation and transmission. As mentioned in Section 2.1, the Rankin-Hugoniot

equation of state i generally used to describe the formulation of the pressure pulse. Assuming
that the source produces a spherically symmetrical stress wave, Sharpe [72] and Blake [73]
made mathematical analyses of the propagation of waves in solid elastic media. The extent of

the hydrodynamic and nonlinear regions and the peak pressures at their boundaries, all depend-

ing on the physical properties of the shot medium, determine the amplitude of the disturbance for

a given size of explosive. Potsson's ratio for the medium which governs the oscillatory property

of the pulse, together with the P-wave velocity and the size of the inelastic -egion, controls the
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TABLE V. DIVISIONS OF TIE INCIDENT ENERGY FOR A
GIVEN ANGLE OF INCIDENCE

Angle of Incidence

0 50 100 150 20P 250 300

% of Incident
Energy Trans-
formed into
Reflected Compres-
sional Waves 11.11 10.84 10.07 8.90 7.48 5.97 4.54

% of Incident
Energy Trans-
formed into
Transmitted
Compressional
Waves 88.89 88.77 88.41 87.83 87.03 86.03 84.84

% of Incident
Energy Trans-
formed into
Reflected
Shear Waves 0 0.26 0.99 2.09 3.39 4.71 5.86

% of Incident
Energy Trans-
formed into
Transmitted
Shear Waves 0 0.13 0.52 1.18 2.10 3.29 4.75

spectral content of the P wave. Recently, two experiments on the coupling of seismic waves to

the surrounding media of tuff and halite have been studied by Adams and Swift [74]. For com-

parison of the medium t s effect, records of the particle velocity spectra were computed for just

one distance from one size of charge. The spectra of the velocity potentials, reduced for sphe-

ricity, were computed to permit synthesis of observations at different distances and with dif-

ferent charge sizes. If the medium coupling effect is defined as the ratio of the tuff velocity po-

tential to the salt velocity potential, then the medium effect for the dominant range of frequencies

(30 to 60 cps) is found to be 1.6 * 0.4. An effect apparently caused by the different overburden

pressure in tuff was also noticed: the energy propagating into the elastic zone in the frequency

range 30 to 60 cps is almost quadrupled when the overburden pressure is increased by a factor

of five.

Using the close-in data of four nuclear explosions, Werth and Herbst [751 calculated the

reduced displacement potentials in tuff, alluvium, granite, and salt. After scaling to a standard
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yield of 5 kt, the potentials were convolved with the impulse to remove the frequency limiting

effect of the Bentoff instruments used as detectors, and with a properly chosen attenuation operator

to remove the high frequencies in accordance with a constant Q-type absorption. The resultant

amplitudes of the first half-cycle of motion, normalized to tuff, at distances on the order of 500

km are: tuff = 1, alluvium = 0.25, granite = 1.11. These results are not in agreement with those

of Adaris and Swift [74] for the tuff-to-salt ratio. In addition, Nicholls [76] pointed out that

the maximum seismic amplitude can be generated in a bored hole by detonating an explosive

when the charge diameter equals the drill-hole diameter, and the characteristic impedance of

the explosive equals that of the shot medium (the explosive's impedance is defined as the pro-

duct of the loading density, id the detonation velocity of the explosive, and the medium's im-

pedance as the product of the density and P-wave velocity of the medium).

4.2. ELASTIC WAVES ALONG A CYLINDRICAL ELASTIC SOLID BONDED TO A SURROUNDING
ELASTIC SOLID

If a salt dome is considered as an isotropic, homogeneous, circular cylinder bonded to the

surrounding elastic solid and connected at bottom with the mother salt bed, the intensity of the

waves at any point inside the bounded salt mass is the result of the superposition of the disturb-

ances resulting from repeated reflections at the boundary upon those waves reaching the point

directly from the source. This phenomena has been referred to as reverberation. Since reflec-

tion at the boundaries leads to the production of standing waves, the wave field in a salt dome

(closed space) has in general a complicated pattern with nodes and loops. This problem seems

not to have been investigated analytically. However, one might speculate that if the energy out-

put of the source located in the salt dome is enormous, as with a nuclear device, a certain frac-

tion of the energy will be trapped in the salt dome by the reverberations. This energy will be

transmitted through the mother salt bed, which might act as a waveguide layer, to detectors in

properly chosen salt domes at various great distances from the source. In some cases this

radiation mechanism may predominate over radiation into the surrounding sediments. Provid-

ing that there is no discontinuity (such as faults with greater displacements) in the mother salt

bed, the waves traveling along the preferable path in salt may have an earlier time of arrival

than those traveling along direct paths, and other possible identifiable characteristics in such

things as spectrkl content and amplitude. These conjectures depend, of course, on whether or

not the salt domes originate as "spouts" from the mother bed.

An approximate solution of the elastic-wave equations for small longitudinal vibrations of an

infinite, homogeneous, isotropic, solid, circular cylinder in a vacuum was first achieved by Poch-

hammer, as described by Love [771]. Assuming axial symmetry and taking the equations of mo-

tion in cylindrical coordinates, the displacements q and w of a particle perpendicular (r direction)
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or parallel (z direction) to the axis of the cylinder were obtained. When proper boundary condi-

tions were applied, the period equation, using Bessel functions, was given. The phase velocity

of the compressional waves propagating along the cylinder can be approximated as

C= E( 1  2 22 (5)

where a = X/2(X + g) is Poisson's ratio; E is Young's modulus; p is the density; a Is the radius

of the rod; and v is a parameter. To extend these results to vibrations of a finite cylinder, ad-

ditional boundary conditions at the ends must be taken into consideration.

The problem of propagation of elastic waves in a fluid contained in a circular bore through

an elastic solid of infinite extent was studied by Blot [78]. Only waves of axial symmetry which

are pure sinusoids along the axial direction were considered. The short-wave limit of phase

and group velocity was the speed of sound in the liquid. The upper limiting value of phase and

group velocity was the speed of shear waves in the solid, and the cutoff wavelength decreased

with increasing mode number. It was pointed out that one branch of the dispersion curve bore

no resemblance to body waves occurring in either medium, and was probably caused solely by

the coupling of the two media. This wave was designated as a Stoneley wave, and its short-wave

limit of phase velocity coincided with the Stoneley -wave velocity at the interface between a

fluid half-space and a solid half-space. For the larger wavelengths, the phase velocities of this

wave decreased and became practically independent of wavelength, an effect which corresponds

to the well-known phenomenon of the water hammer in tubes. Biot considered that elastic waves

propagating along the axis at speeds greater than shear speed in the solid may result in attenua-

tion through radiation of energy away from the borehole as conical waves. However, White [791

presented solutions describing unattenuated propagation along the axis at phase velocities great-

er than shear and compressional speeds in the solid. He concluded that the arriving or reflec-

tion of conical waves from a cylindrical borehole in a solid is analogous to the reflection of

plane waves at a plane boundary.

5

DEOUPUNG FFECTS FROM CAVITY DETONATICN

5.1. THEORETICAL BACKGROUND

When a coupled or tamped explosive of a givcnyteld is detonated in the earth, an inelastic

zone is usually created, and the surrounding medium flows plastically until the energy degener-

ates into a steady pressure at a distance termed the "elastic radius." Beyond this "elastic
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radius" the disturbance propagates elastically outward. In the inelastic zone the medium under-

goes large displacements because it flows as a liquid. If, however, an explosive of the same

yield is placed in a large spherical cavity in the earth, and the cavity has such a radius that

the steady pressure experienced by the wall will not cause the surrounding medium to behave

non-elastically, then the hot gases produced by the free expansion of the explosion will do work

on the surrounding medium, which may then respond elastically. For such an explosion in a

cavity, more energy has to be retained locally as internal energy of the hot gases. Also, a

portion of the explosive energy may be expected to leave the cavity in the form of seismic waves

of high frequency, which attenuate rapidly and would thus not be detectable at great distances.

The radius at which the tamped explosion reaches the critical stress, i.e., where the elastic

propagation begins, is much larger than the radius of a spherical cavity which is just equal

to the elastic radius. Because the amplitude of the low-frequency (around 1 cps) seismic waves

propagated is directly proportional to the product of the stress and volume at the elastic radius,

the decoupled explosion causes a smaller seismic disturbance at a distance.

Latter et al. [ 80] have developed a theory concerning the decoupling of seismic energy.

The ratio of the seismic signals between a coupled and decoupled explosion, for frequencies

around 1 cps, is given as

A ch 2hro2do

decoupling factor (w) 16 (6)Ch(P ) 3= - 1 c W(6

where ( ) and eh(w), for the coupled and decoupled explosions respectively, are the Fourier

transforms of the elastic displacement produced by a calculable step-function pressure on the

wall; y is a constant, the ratio of specific heats applicable to the hot gases in the cavity (y a

1.2 for salt); ch is the speed of sound in the medium around the cavity; c is the speed of sound

in the medium around the coupled explosion; Mh is shear modulus in the medium around the

cavity; r0 is the distance from the coupled explosion at which permanent displacement do is

measured in the elastic region; and W is the explosion energy yield.

Some insight into the decoupling theory may be obtained in the following way. If an explosion

is spherically symmetrical in the region r beyond some elastic radius re, then the equation of

elasticity reduces to the one-dimensional wave equation in terms of a displacement potential,

A(T), related to the displacement (r, t) by

u(r, t) a -A(r)1 (7)
8r Lr2

28



Institute of Science and Technology The University of Michigan

as shown by Herbst, Werth, and Springer[81] and Latter, Martinelli, and Teller (82], where r =

t - r/c. The Fourier transform of the displacement is

1(w) (8)

It should be noted that, as given, A(w) is independent of r.

To treat the dissipation and instrument effects, the earth may be represented by an operator

0. This means that the detected signal will be given by S(T) = OA(T). After the Fourier trans-

form has been performed, the signal will contain the Fourier component: S(o) = w() A(w).
Now if there are two explosions of the same yield, one coupled and one decopled, for which the

conditions inside re differ but are the same outside re, then

decoupling factora, oupled() - / (9coupled )

Latter et al. [80] assumed that the energy, W, of the explosion was suddenly distributed

uniformly over the volume of the spherical cavity of radius a, and produced a step-function pres-

sure on the walls given by

p = ( 1)W (10)

The Fourier transform of the elastic displacement produced by such pressure at a distance r

in the wave zone, for frequencies around 1 cps, was

w ~~= pa3  = 3 (y - 1)W (I
h 8rhrc h 32vr 2 hch

The (w) of the RAINIER shot was computed frow actual measurements and given as

(w) r°2d° 12
= - - -- -(12)

Comparison of these two Fourier transforms (Equations 11 and 12) gives Equation 6, the de-

coupling-factor equation. Since the decoupling factor is directly proportional to Ah' it is

obvious that stronger media will give a larger decoupling factor, if other quantities remain

unchanged. Latter et al. [ 80] predicted that wave amplitude from a decoupled shot in salt would

be only 1/ 300 of that from a coupled shot of the same yield in tuff at NTS.
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For the medium to behave elastically it is necessary that the volume of the cavity be in-

versely proportional to tWe source pressure and directly proportional to the yield of the explo-

sion. Whenthe explosion occurs, the overburden and explosion stresses may be adjusted to cancel

each other without putting the medium into tension, and plastic flow and cracks can be avoided.

In order to achieve maximum decoupling effects, these two kinds of inelasticity must be avoided.

Once the decoupling cavity for a given yield exceeds some critical size, the value of the decoup-

ling factor will not be improved by increasing the size of the cavity. This. is because the source

energy W is essentially proportional to pa 3 , and the displacement at great distances, if the shot

is detonated in a cavity large enough to keep the steady pressure below the elastic limit of the
3surrounding medium, is also proportional to pa , as shown by Latter, Martinelli, and Teller [ 82]

Therefore the distance signal is independent of the cavity radius if the cavity is big enough so

that the average pressure inside remains below the elastic limit of the surrounding medium.

The effect on decoupling of undergound explosions of plasticity on the cavity wall was also

investigated by Latter et al. [83]. After a mathematical consideration of the approximated

stress-strain relations, including work hardening, for a large spherical cavity designed to give

maximum decoupling, they concluded that the plasticity which occurred during the making of the

cavity (where the overburden pressure is comparable to the yield stress of the medium) has no

effect whatsoever on the decoupling factor. As for the overdrtven cavity, i.e., a small cavity

designed to give partial decoupling only, the radial stress of the medium will be closer to the

tangential stress in magnitude, which is a characteristic property of a liquid. This implies

large displacement and, hence, reduction of the decoupling factor. However, detailed examin-

ation showed that the reduction of the decoupling factor for an overdriven cavity at a depth of

1 km in salt is 2 or less as long as the ratio p / po, where p5o is the steady-state (average)

pressure in the cavity and p is the lIthostatic pressure of the cavity wall. As mentioned above,

cracking is another important kind of inelasticity. If cracks already exist in the medium, the ratio

P /po should be less than 1 in order to avoid the cracks' opening up and propagating. Because

rock-like materials have little or no strength in tension, the pOD/po ratio should be less than 3

to insure that hoop stresses remain compressive, and, thus, to avoid cracking.

The effect of the pressure spike, which is generated by the explosive and will last only a o

few milliseconds, on the seismic signal at large distances is not known. If the yield of the explo-

sion is small and the pressure spike is well below the plastic limit of the medium, then the

spike will not increase the distant seismic signal, since its period is too short in comparison to

the periods of waves that can travel to long distances Also it is unlikely that large tensile hoop

stresses which will cause cracking are produced by such a short duration pulse. However, if it

is desired to reduce or eliminate such a pressure spike, it has been suggested [ 80] that less
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energy from a nuclear device will go into shock motion if the air in the cavity is partially

evacuated or partially replaced with hydrogen gas.

The effect of vaporization caused by hot gas on the inside surface of the cavity is to produce

a recoil shock pressure which should be added to the pressure of the gas. Rough estimates of this

effect for an explosion of 1.7 kt in a 130-foot cavity, either at normal conditions or with the cavity

partially evacuated, show it to be negligible. However, thin foils oriented along radial lines in

the cavity may be used to reduce or eliminate this vaporization pressure, since the foils soak up

heat and thus lower the vaporization.

The optimum volume of the cavity can be computed approximately:

V =3x 10 - ft (13)

where W is the yield in kilotons and p the maximum permissible explosion pressure in kilobars,

as given by Latter et al. [80]. For instance, if p is 150 atm., the volume of the cavity must be

3 x 106 ft3 (a radius of 90 feet) for a yield of 1.7 kt detonated in a salt dome.

5.2. EXPERIMENTAL RESULTS

An experimental test, Project COWBOY, using high explosives at depths about aoo feet below

the ground surface in a small salt dome near Winnfield, Louisiana, was conducted in 1960 for the

purpose of checking the validity of the foregoing decoupling theory. Comparative measurements

of earth motion, both in salt near the explosions and on the ground surface out to ranges of

several miles, were obtained from coupled and decoupled charges of the same sizes. The shot

locations were some 500 feet apart in the mine. The results will here be discussed separately.

Close-in measurements of pressure versus time at the cavity wall and of peak particle

velocities and displacements in the media near the coupled and decoupled explosions (for cav-

ities 6 feet and 15 feet in radius) were studied in detail by Murphey [84] . To demonstrate the

actual pressure-time history in a cavity of 15-foot radius, which was evacuated to about 1/20

atm., he presented two pressure-gage records over both short and long time intervals, which

are shown in Figure 12. It is seen that the pressure on the cavity wall is not exactly a step

function, but that there are superposed short-duration pressure pulses. For an accurate

decoupling calculation, the observed pressure-time history should be used in place of the assumed

step-function pressure of Equation 10. It is interesting to note that the recorded pressure on the

wall of the cavity of radius 15 feet from a 954 -lb high-explosive shot was used by Nuckolls,

as reported by Herbst, Werth, and Springer [ 81], for the input to calculate the displacement at

80 feet. The calculated curve is in very good agreement with experimental data obtained from

the integration of a velocity instrument record at 80 feet from the center of the cavity. The
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FIGURE 12. CAVITY PRESSURE VS. SHORT TIMES (a) AND LONG TIMES (b) FOR A 1000-1b DECOUPLED
EXPLOSION IN A CAVITY OF RADIUS 15 FEET [841

pressure record and a comparison of the displacement curves are shown in Figures 13 and 14,

respectively.

Brode and Parkin [85] made a detailed study of blast and close-in elastic response of the

cavity detonations. Mathematical wall-pressure histories were calculated by using the burning

conditions of the exploaive, the equation of state for the explosive, and the equation of state for

cavity air. Then, the calculated wall-pressure history was used as input to calculate displace-

ments, which were compared with experimental data. As shown in Figure 15, the calculated

and experimental displacements are in good agreement. The time shift was probably caused

by the wrong detonation time being marked on the particular experimental record. The field

conditions for Figure 15 correspond to those for Figure 14.

Sample peak velocity-time records made by an oscillograph are shown in Figures 16 and

17. The high frequency on the decoupled record was probably caused by ringing of the canister

containing the gage. However, even after this ringing was filtered out during integration to

obtain displacement, the accuracy of the data remained questionable. On the other hand, the
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rise time of the change in particle velocity for the coupled shot was slow enough for the gage to

follow the motion with considerable accuracy. It was found that the peak velocity decreased

as the inverse 1.65 power of the distance over the range r/W 14/$ = 4 to 80.

The term r 2d in the decoupling-factor equation (Equation 6) represents the increase in
0 0

volume of the cavity observed at distance r0 with a permanent displacement d, or the permanent
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mass motion which would occur after an explosion in a perfectly elastic incompressible medium.

It was hoped that the measurement of d could be obtained by integrating the velocity-time

records. However, this could not be done accurately because the peak displacements were too

large compared to the permanent displacements. Therefore Murphey [84] computed the close-

in motion decoupling factors with

Uc Popc ac

Ud P,,d ad
at r >> ad, ac (14)

d pc aC2

d dPcod ad2

where uc , ud are peak particle velocities of coupled and decoupled explosions, respectively; dc,

dd are the peak displacements; PWc' Pcd are the effective pressures; and aC, ad are the elastic

radius (r e ) of the coupled explosion and the cavity radius of the decoupled explosion, respective-

ly. These equations can be obtained by considering that pressure p at radius r from the center

of a cavity of radius a is to vary thus: p = p,(a/r) = pcu, where p is density, and c is the veloc-

ity of sound in the medium; or,

Pw a
PC r

Assuming that u varies sinusoidally with time, then

d=~-~a -2' r >> ra (16)

with pc = Pd' cc = Cd as in the close-in measurements of the Project COWBOY experiment,

and Equation 14 is obtained from Equations 15 and 16. However, it should be noted that these

factors are independent of frequency; apparent frequency dependence might result from a com-

parison of different phases or of signals plus or minus noise.

The distant decoupling factor for waves of low frequencies which would be observed by

distant gages can be calculated from data on observed close-in peak velocities and displace-

ments. Murphey used the following equation:

p a 3  (d/dd)2

distant decoupling factor = -oc _ c (17)
Pcd ad3 ucu
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The decoupling factors computed from close-in peak velocities and displacements for high ex-

piosives in rock salt are summarized in Table VI as given by Murphey. It should be noted that

the condition of the comparison being made in the zone where velocities fall off inversely to

distance is not considered in the table below. Also, the values of ac used in computing the de-(
coupling factors reflect a variation in d/u with distance (ac c ), so the assumptions of elas-

tic behavior of the medium beyond the elastic radius are not completely correct.

TABLE VI. DECOUPLING FACTORS FOR HIGH
EXPLOSIVES IN HALITE [84]

2[dc/dd 1

Cavity dc/d d
Radius Uc/U dW r
(feet) (ib) (feet)

15 20 30.5 47 200 200
15 7.3 23 72 500 370
15 7.5 30 120 1000 365

6 35 --- 20 35
6 25 --- 100 35
6 6.7 10 15 1000 460
6 5 8.6 15 2000 460

The results of tests of the theory of seismic decoupling in salt dome environment, at dis-
tances on the ground surface ranging from 14,000 to 22,000 feet from ground zero and at fre-

quencies of 10 to 30 cps, were thoroughly analyzed by Herbst, Werth, and Springer [81]. Sample

records displaying the decoupling effect are shown in Figure 18. In order to estimate what

effect the surrounding geology and the salt dome had on the measurements, theoretical seismo-

grams showingtypical behavior of a reasonably assumed geologic model were obtained by con-

voluting the impulse response of this crude model to an impulse source with source functions

assumed equivalent for the coupled and decoupled explosions. These records represent the

types of complications caused by the geology. For example, transmission coefficients change

rapidly with angles when the refracted rays approach grazing angles on the dome walls. Thus,

for certain dome configurations, there might be enough change in angles to produce a signifi-

cant amplitude change with variation in source location. (The source locations of the paired

explosions were about 500 feet apart.) Herbst, Werth, and Sprtnger concluded that the station-

to-station and trace-to-trace variations in decoupling factors noticed in the experimental data

are a result of the particular wave path, explosion location, and surrounding geologic environ-

ment.
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FIGURE 18. COMPARISONS OF COUPLED AND DECOUPLED RECORMD OBTAINED UNDER
ALMOST IDENTICAL SHOT CONDITIONS [SlJ

The Fourier transform is usually employed in analyzing seismic data. Provided that

two impulse responses are identical, this method is reliable, and one may, in principle, take

a ratio of coupled to decoupled explosion spectra, thus cancelling out the geologic effects and

giving only the source effects. However, Herbst, Werth, and Springer found that ratios of the

experimental records gave wild results even in passbands of 2 to 20 cps for the low-frequency

instruments, and 20 to 100 cps for the high-frequency instruments. This was explained as

being caused, in this came, by unidentical impulse responses for the paired explosions. Shift in

source location may change the impulse response of one explosion relative to the other so that,

in taking a ratio, the impulse responses do not cancel out. It was shown, with the aid of the

theoretical seismograms, that the structure of the spectrum is controlled by the impulse re-

sponse, and any small shift in phase will produce a disproportionate decoupling ratio between

two spectra.

Therefore, the authors computed the decoupling factors by utilizing narrowband filtering,

which is a smoothing process and will not yield inordinate ratios. Because the seismograms

recorded with the high-frequency instrument were equivalent to narrowband filtering at 30 cps,
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the amplitudes of the three most noise-free traces (distance from the nearest trace to ground

zero = 14,400 feet) were normalized to a 500-lb coupled explosion and analyzed. The decoupling,

for both optimized cavities and overdriven cavities, is summarized in Figure 19. The analysis

gives the ratios of the average amplitude response over a specific time length in a given fre-

quency band, in this case for the dominant frequency of 30 cps, with the high-frequency cutoff

controlled by characteristic attenuation of the medium, and the low-frequency cutoff by the

limitations of the instrument. These ratios, as in the close-in data analysis, are dependent

upon the seismic signal with or without ambient noise.
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. . . . .
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FIGURE 19. SUMMARY OF DECOUPLING AT
A FREQUENCY OF 30 cps (811

Because seismic attenuations are usually frequency dependent, it is interesting to find out

what happens to these decoupling values or amplitude ratios at lower frequencies. Since spectra

obtained from high-frequency records showed a sharp cutuff at the low-frequency side, data from

the low-frequency instruments (2 to 20 cps passband) were used. However, lack of reproduc-

tivity in spectra from trace to trace somewhat impaired the results as shown in Figure 20.

Even though the data are widely scattered, they do not indicate that the decoupling decreases

significantly at low frequencies. The frequency dependence of decoupling for an overdriven

cavity (for a 1000-lb explosion) was also investigated by Herbst, Werth, and Springer [811. The

decoupling value was in the range from 15 to 30 at frequencies between 5 and 30 cps. If this

result can somehow be extrapolated to nuclear explosions, then a sizable decoupling stUl can be

obtained with a cavity smaller than optimum ones.
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The surface measurements of Project COWBOY were also studied by Adams and Allen [861,

who give an excellent description of the field arrangements. The decoupling-factor equation

(Equation 6) was extended as a function of frequency in the following form:

1/2
1 Orr _2d0  r, 2 4

decoupling factor =1) 0 14A ) 41
tn(w) 37777W Ah+4J+1k +L2 n (8

where X, A are the Lam6 constants and o/co = M" The decoupling factors derived for displace-

ment as modified for the effect of the pressure spike were processed by two methods: the Four-

ier transform method and power density spectrum method. The ratio of the amplitude spectrum

of the coupled explosion to that of the decoupled explosion, as a function of frequency, gives an

estimate on the decoupling factor as specified in the following equation:

0c(W) Wd

Od(W) Wc

where U(t), Ud(t) are the near-in displacements of the coupled and decoupled explosions, re-

spectively; and Wd/Wc is the modifying factor for explosions of different yields, i.e., the ratio
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of the decoupled yield to the coupled yield. For this, the assumption is made that the amplitude

coefficient at a given frequency is directly proportional to yield.

On records of the decoupled low-yield explosions, the seismic noise had about the same

order of magnitude as the signal; hence it was necessary to study the effect of this noise. A

code was developed to compute the energy density spectrum by Fourier transforming of the

autocorrelaton of the signal, which may be considered an aperiodic function having a finite

duration and energy. Because the power density spectrum is related to the Fourier spectrum

at the limit by U(T" ) OC I F(w) 12, the decoupling factor is given by

F____l Wd

F(w) r-- W(20)

where Uc(T ) and Ud(T) are the power density spectra of the coupled and decoupled explosions,
respectively; T is the time lag; and Wd/Wc is the modifying factor for explosions of different

yields, as before.

The Fourier spectrum or the power density spectrum was then derived for the entire length

of the signal, about 100 seconds. Generally, the power density spectrum method gave a more

smoothed decoupling vs. frequency curve. Adams and Allen summarized their results by plot-

ting the decoupling factor as a function of steady-state cavity pressure (p o) normalized to the

lithostatic overburden pressure (p., = 55 bars for Project COWBOY) in a specific frequency

range, and these graphs are shown in Figure 21. These decoupling factors are the minimum

values, since they are not corrected for the effect of the background microseismic noise on the

decoupled shot. It is found that the aerived decoupling coefficient is always decreased by omit-

ting the effect of this noise.

Independent measurements using Willmore seismometers at a distance of 1.1 to 7.7 km

from the Project COWBOY explosions were collected and analyzed by Willis and Wilson [87].

The maximum reduction for coupled versus decoupled explosions was about 200 for the 15-foot

radius cavity and 22 for the 6-foot radius cavity. Approximate energy ratios for coupled versus

decoupled explosions were calculated and plotted as a function of frequency (see Figure 22). It

can be seen that the decoupling is frequency dependent, and the transverse component of ground

motion showed a larger decoupling factor than the longitudinal and vertical components. The

authors also observed that peak vertical particle velocity decreased as the inverse 2.6 power

of the distance, and that no evidence was observed to support the theory that the predominant fre-

quency generated is related to the inverse cube root of the charge size.

40



Institute of Science and Technology The University of Michigan

140 - .

Ito

00,,o er \

-I 0 S.

:0

0.01 0.10 1.00 00.00
STUADY- STATC P0199111,111
OVESoUoDSW PR.\ SUnE

(a)

140 1I 140

120 - 2o

100 \ loo

s i o - so

040 40 -

20 - go e

0 I I 0 I I

S. 0.01 0.0 1.00 1000
ST0 ADY-STATE PRESSUIE

STUAY-STATS PRE[SSURE OVINDUNDIN pOWS$UFF-
overnsu _ _ Oml[SsuS P S

(b) (c)

FIGURE 21. MINIMUM DECOUPLING FACTORS [86]. (a) 10 to 20 cps.
(b) 20 to 30 cps. (c) 30 to 40 cps. Synmbols in circles denote stations.

Wylie [88] analyzed the records from Project COWBOY obtained by Texas Instruments at

a distance of 22,100 feet from ground zero. Spectral analyses of the signals and noise were

performed by using the Wiener theorem for autocorrelation as presented by Lee [89]. Sets of

amplitude density ratios were presented as functions of frequency, and a great deal of trace-

to-trace variation in these curves was observed. The average decoupling factor was about 100

over the frequency range of 10 to 48 cps, with a maximum value of 260 at 16 cps and minimum

of 25 at 20 cps. A unique coherence calculation of the signals from the paired explosions was
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made because, theoretically, the signal of the decoupled explosion should be the result of linear

filtering of the coupled explosion signal. The results show that the assumption of the linear fil-

ter characteristics of decoupling is reasonably substantiated in the 22- to 40-cp frequency

band (coherence = 0.6 in comparison with complete coherence = 1).

Haskell [90] developed a static equilibrium theory to explain seismic coupling of a con-

tained underground explosion without knowledge of the details of the dynamic processes by

which the final steady state is reached in the cavity. The detailed theoretical derivation of the

equations will not be recounted here, but, in principle, he used a Coulomb-Mohr type of yield

condition (the relationship between shear strength and normal stress used in soil mechanics)

to describe the maximum stress difference n materials in the crushed zone around the cavity

where the stresses are beyond the elastic limit after the steady-state pressure is reached.

Static solutions were obtained for a spherically symmetrical explosion, with stresses caused

by lithostatic pressure of the overburden taken into consideration. If the internal friction

parameter, defined as k - sin 0,where I s the Coulomb coefficient of friction on the internal

fracture surface, is treated as a phenomenological constant to be determined by the seismic

data, then the coupling parameter, A, can be computed as a function of the initial radius of the
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cavity r0 , for various assumed values of k. In Figure 23, values of B, computed with assumed

values of the other pertinent constants for a 2000-lb explosion in salt, are compared with scaled

values of r for different yields (r. scaled in proportion to the cube root of the energy ratio)

from Project COWBOY data (cf. Figure 19). As indicated by this comparison, the values of the

internal friction parameter k are in the range from 0.2 to 0.35, much less than those of 0.48 to

0.72 obtained from compression tests on unconsolidated sands. The author interpreted the low

value of k as an indication that the deformation in the inelastic zone involves both plastic flow

and slippage along fracture surfaces.
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FIGURE 23. CALCULATED COUPLING PARAMETER" (B)
VS. INITIAL CAVITY RADIUS (ro) FOR 2000-1b SHOTS IN
SALT [90]. Crosses indicate values scaled from Project

COWBOY data.

Though the decouping results obtained by various methods are somewhat different, they do

suggest the general validity of the decoupling theory. The reduction of the decoupling in salt

from the theoretically predicted value of 130, as shown by Adams and Allen [86], to an average

value, say 100 at 30 cps (df. Figure 19, assuming explosions in a cavity of 15-foot radius rep-

resent purely elastic behavior), does not diminish the importance of the decoupling effect.

Latter et al. [83] suggested that this reduction was probably caused by cracking alone, either

because the medium was subjected to tension or because gases leaked into pre-existing cracks.
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6

SUMMARY AND CONCLUSIONS: THE STATE OF TH1 ART

The massive salt domes have moved up through the overlying sediments for distances of

thousands of feet from deep-seated mother salt beds. It is now commonly believed that the form-

ing of salt domes is best explained by the upward-thrusting plastic-flow theory. Slight initial

protuberance of low-density salt upward into higher-density surrounding sediments caused a

differential lateral pressure toward the salt. This, together with increased temperature caused

by deep burying, overcame the strength of the salt, which began to rise vertically as a plastic

mass until equilibriumwas established. This movement was rejuvenated again and again during

past geologic time. The layers within the salt mass, consisting chiefly of mineral halite, stand

rvertically around the edges of the dome, but in the interior they are folded in various forms.

When an explosive is detonated in a solid, shock effects from the sudden releasing of the

detonation pressure and expansion effects caused by gas products of explosives are transmitted

into the medium. The tensile stresses associated with the radial compressional stresses in the

spherically progressive waves cause a failure in tension in the medium. However, it seems that

the complex interactions between the medium and the large gaseous expansion which follows the

detonation may also have important effects, and little is known about this type of fracturing.

Fracturing of rock as it is subjected to an explosive detonation in its interior region has been

treated in a general way with practical, empirical formulas. The details of the dynamics and

mechanics of the fracturing processes are not well known, and the input energy is generally

related to the output of crushed material only in a statistical way.

Utilizing the transmission, reflection, and refraction characteristics of the earth strata,

the measurements of travel times of seismic waves as a function of depth only are used to de-

lineate subsurface geologic structures such as the boundary configuration of a salt dome. The

seismic velocity is nearly constant in the salt mass, but varies with depth in the surrounding

strata. Surface-to-surface refraction profiles will give good approximations of areal extension

and depth of a salt dome. Control of additional detail on its irregular flank configuration may

be gained with vertical profiles. The frequency and amplitude characteristics of seismic waves

returned from different subsurface strata are not understood, and they are used only qualitative-

ly in interpretation at the present time. Further research is needed in these areas.

It has been observed from an actual experiment conducted in a salt dome that if a chemical

explosive is detonated in a properly designed spherical cavity deep in the earth, the amplitude

of the seismic waves radiated away is about two orders of magnitude less than for an equivalent

coupled explosion. The decoupling factor is a function of frequency. The close-in measurements
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and surface measurements agree with each other and with the decoupling theory, proving the

theory valid. However, the results on decoupling obtained by using chemical explosives are not

necessarily applicable to nuclear explosions. The pressure-time history of a nuclear explosion

in a cavity or in a tamped condition will be definitely different and cannot be scaled from chem-

ical explosions. In fact, it is known that nuclear explosions of different yield do not even exhibit

similar behavior in starting pressure. Therefore, it seems that the decoupling factor for a

nuclear explosion in an underground cavity can be determined only by field experiments.
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